A finite difference scheme with a Leibniz rule

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 191049
(http://iopscience.iop.org/0305-4470/19/6/032)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 13:01

Please note that terms and conditions apply.

COMMENT

A finite difference scheme with a Leibniz rule

Y Bouguenaya and D B Fairlie
Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE, UK

Received 8 August 1985

Abstract

In a finite difference scheme for numerical approximation the usual notion of product is replaced by a convolution to circumvent the failure of the product rule for differentiation. The solution displays a complementarity: the more localised is the product the more extended is the approximation to the derivative and vice versa.

One of the problems of constructing discrete approximations to non-linear equations is the lack of a discrete analogue of the Leibniz rule for differentiation of a product-the familiar distributive law

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(f g)=\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right) g+f \frac{\mathrm{~d} g}{\mathrm{~d} x} \tag{1}
\end{equation*}
$$

fails for any finite difference approximation to the derivative (Drell et al 1976). In this comment we explore a loophole in this conclusion and restore a version of the Leibniz rule by modifying the definition of a product of two functions defined on a discrete set. In fact, what we find is a kind of complementarity: the more the product is localised, the more extended is the definition of derivative and vice versa. The problem is easy to set up, but not straightforward to solve.

Suppose two functions f and g are defined on the integers with periodic boundary conditions:

$$
\begin{equation*}
f_{i}=f_{N+i}, \quad g_{i}=g_{N+i} \quad\{i=0, \ldots, N-1\} . \tag{2}
\end{equation*}
$$

Then we define the derivative at i as a linear combination

$$
\begin{equation*}
(D f)_{i}=\sum_{j} d_{i j} f_{j} \tag{3}
\end{equation*}
$$

and the product by

$$
\begin{equation*}
(f g)_{i}=\sum_{j, k} c_{i j k} f f_{k} \tag{4}
\end{equation*}
$$

The coefficients $d_{1 j}$ and $c_{i j k}$ satisfy further natural requirements. If f is a constant then its derivative must vanish, i.e.

$$
\begin{equation*}
\sum_{j} d_{i j}=0 \tag{5}
\end{equation*}
$$

Also if $f=c$ is constant

$$
(f g)_{i}=c g_{i}
$$

giving

$$
\begin{equation*}
\sum_{j} c_{i j k}=\delta_{i k} \tag{6}
\end{equation*}
$$

and $c_{i j k}$ is symmetric in j and k as f and g are on the same footing, i.e.

$$
\begin{equation*}
c_{i j k}=c_{i k j} \tag{7}
\end{equation*}
$$

The final requirement we shall impose is associativity:

$$
\begin{equation*}
(h(f g))=((h f), g) \tag{8}
\end{equation*}
$$

which translates into

$$
\begin{equation*}
\sum_{s} c_{i j s} c_{s k l}=\sum_{s} c_{i l s} c_{s k j} . \tag{9}
\end{equation*}
$$

Then the Leibniz rule is

$$
\begin{equation*}
\sum_{l} d_{i l} c_{l j k}=\sum_{l} c_{i l k} d_{l j}+\sum_{l} c_{i j l} d_{l k} . \tag{10}
\end{equation*}
$$

The normal definition of product requires that

$$
\begin{equation*}
c_{i j k}=\sum_{r} \delta_{i r} \delta_{j r} \delta_{k r} \tag{11}
\end{equation*}
$$

which vanishes unless i, j, k are all equal. With this choice there is no solution for d. Further constraints arise from translation invariance:

$$
\begin{equation*}
d_{i+1, j+1}=d_{i j} \tag{12}
\end{equation*}
$$

where $i+N=i$ is replaced by i and there are similar constraints upon the c coefficients. The set of relations (5) and (10) are non-linear and the only obvious approach is to first satisfy (6), the only equations which are inhomogeneous, together with (7). It turns out that it is easier to first find a particular solution, and then to generalise this later.

Consider the ansatz

$$
\begin{equation*}
\left.c_{i j k}=\delta_{i j} P_{k}+\delta_{i k} P_{j}-P_{j} P_{k} \quad \text { (all } i\right) \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{k=0}^{N-1} P_{k}=1 \tag{14}
\end{equation*}
$$

This clearly satisfies (6) and (7) and can easily be verified to satisfy the associativity relationship (9). The equation (10) is satisfied provided only that

$$
\begin{equation*}
\sum_{k} P_{k} d_{k l}=0 \tag{15}
\end{equation*}
$$

This condition requires that $d_{k l}$ is a matrix of rank $N-1$, and together with (5) implies that the general solution for $d_{i t}$ is

$$
\begin{equation*}
d_{i l}=a_{i l}-\sum_{k} \frac{P_{i} P_{k}}{P^{2}} a_{k i}-\sum_{k} a_{i k} P_{l}+\sum_{k} \sum_{r}\left(P_{k} a_{k r}\right) \frac{P_{i} P_{l}}{P^{2}} \tag{16}
\end{equation*}
$$

where $a_{i l}$ is an arbitrary $N \times N$ matrix.

In particular, with the choice $P=1 / N(1,1,1, \ldots, 1)$, the usual two-point choice for $d_{i l}$, namely

$$
\begin{equation*}
d_{i l}=\delta_{1 l}-\delta_{I l+1} \tag{17}
\end{equation*}
$$

satisfies (14) and (15) and gives for a product

$$
\begin{align*}
(f g) & =f \frac{1}{N} \sum_{k} g_{k}+g \frac{1}{N} \sum_{k} f_{k}-\frac{1}{N^{2}}\left(\sum_{k} f_{k}\right)\left(\sum_{l} g_{l}\right) \tag{18}\\
& =f\langle g\rangle+g(f\rangle-\langle f\rangle\langle g\rangle \tag{19}
\end{align*}
$$

where $\langle f\rangle$ denotes an average over sites. Equations (17) and (19) clearly satisfy translation invariance requirements. This definition of product is highly non-local: in order to modify it we require a more general ansatz than (13). Consider a second vector q_{k}, similarly normalised so that its components sum to unity, and the ansatz

$$
c_{i j k}=\delta_{i j} P_{k}+\delta_{i k} P_{j}-P_{j} P_{k}+\left(q_{j}-P_{j}\right)\left(q_{k}-P_{k}\right) \frac{P^{2} q_{i}-(q \cdot P) P_{i}}{\left(P^{2} q^{2}-(q \cdot P)^{2}\right)}
$$

where

$$
\begin{equation*}
(q \cdot P) \text { denotes } \sum_{l=0}^{N-1} q_{l} P_{l} \tag{20}
\end{equation*}
$$

This clearly satisfies (6) and (7) and after a little more calculation can be seen to fulfil associativity (9). Then equations (10) are satisfied provided that $d_{i j}$, in addition to satisfying (5) and (15), also satisfies

$$
\begin{equation*}
\sum_{l} q_{i} d_{i j}=\sum d_{i l}\left(P^{2} q_{i}-(q \cdot P) P_{i}\right)=0 . \tag{21}
\end{equation*}
$$

This $d_{i j}$ is now of rank $N-2$, and is not so localised as in the former case. Further linearly independent vectors r, s, t, etc, all similarly normalised may be added to introduce more parameters into the choice of $d_{i j}$: this is the complementarity referred to earlier. The structure of this family of solutions is already evident with only three vectors P, q and r. The solution

$$
c_{i j k}=+\frac{1}{\Delta}\left|\begin{array}{cccc}
P_{i} & q_{i} & r_{i} & -P_{j} \delta_{i k}-P_{k} \delta_{i j}+P_{j} P_{k}(\text { all } i) \tag{22}\\
P^{2} & P q & P r & 0 \\
q P & q^{2} & q r & \left(P_{j}-q_{j}\right)\left(P_{k}-q_{k}\right) \\
r P & r q & r^{2} & \left(P_{j}-r_{j}\right)\left(P_{k}-r_{k}\right)
\end{array}\right|
$$

where

$$
\Delta=\left|\begin{array}{ccc}
P^{2} & P \cdot q & P \cdot r \tag{23}\\
q \cdot P & q^{2} & q \cdot r \\
r \cdot P & r \cdot q & r^{2}
\end{array}\right|
$$

satisfies (6) and (7). Here $P q$ denotes

$$
\sum_{i=0}^{N-1} P_{i} q_{i} .
$$

To demonstrate that (22) satisfies associativity it is best to proceed by establishing the lemma

$$
\begin{equation*}
\sum_{i} V_{i} c_{i j k}=V_{j} V_{k} \tag{24}
\end{equation*}
$$

(where V is P, q or r) by the use of simple determinantal properties. With the help of this lemma, and the simple identity

$$
\begin{equation*}
P_{j} P_{k}-v_{j} v_{k}=\left(P_{j}-v_{j}\right) P_{k}+\left(P_{k}-v_{k}\right) P_{j}-\left(P_{j}-v_{j}\right)\left(P_{k}-v_{k}\right) \tag{25}
\end{equation*}
$$

the left-hand side of (9) may be calculated to give
$\sum c_{i j s} c_{s k l}=P_{j} c_{i k l}+P_{k} c_{i j j}+P_{l} c_{i j k}$

$$
+\frac{1}{\Delta}\left|\begin{array}{cccc}
P_{i} & q_{i} & r_{i} & +P_{j} P_{l} \delta_{i k}+P_{k} P_{l} \delta_{i j}+P_{k} P_{j} \delta_{i l}-P_{j} P_{k} P_{l}(\text { all } i) \tag{26}\\
P^{2} & P q & P r & 0 \\
q P & q^{2} & q r & \left(P_{j}-q_{j}\right)\left(P_{k}-q_{k}\right)\left(P_{l}-q_{l}\right) \\
r P & r q & r^{2} & \left(P_{j}-r_{j}\right)\left(P_{k}-r_{k}\right)\left(P_{l}-r_{l}\right)
\end{array}\right|
$$

This expression is clearly symmetric in j, k, l and hence is equal to the right-hand side. The final equation (10) imposes the condition that P, q, r are left null eigenvectors of $d_{i j}$, while the column vectors $(1,1,1, \ldots, 1)^{\boldsymbol{r}}, p_{j} v^{2}-(p v) v_{j}$ are right null eigenvectors of $d_{i j}$, i.e. d is of rank $N-3$. Translation invariance is automatically implemented in (22) because the product formula involves scalar products of f and g with P, q, r, but remains an extra requirement on d. It is evident from (22) how to extend this solution to incorporate N independent vectors. As the number of parameters increases the product is effectively more and more localised until with N vectors the usual formula (11) is recovered. To see this it is sufficient to take (22) with $N=3$. Choosing $p_{i}=\delta_{i 0}$, $q_{i}=\delta_{i 1}$ and $r_{i}=\delta_{i 2}$ the product formula becomes

$$
\begin{align*}
(f g)_{i}=f_{0} g_{i}+ & f_{i} g_{0}-f_{0} g_{0} \quad(\text { all } i) \\
& +\delta_{i 1}\left(f_{0}-f_{1}\right)\left(g_{0}-g_{1}\right)+\delta_{i 2}\left(f_{0}-f_{2}\right)\left(g_{0}-g_{2}\right) \\
= & f_{i} g_{i} \quad \text { (by enumeration of cases) } . \tag{27}
\end{align*}
$$

A further generalisation of (22) which treats the vectors on a similar footing and which satisfies all the equations (5)-(10) may be constructed as follows. Define an $N \times L$ matrix $P_{i \alpha}(i=0, \ldots, N-1 ; \alpha=0, \ldots, L-1)$ whose columns are the vectors P, q, r, etc, and introduce an L component vector λ_{α} whose components sum to unity.

Then, C is defined as the determinant of the partitioned matrix

$$
c_{i j k}=\frac{1}{\Delta}\left|\begin{array}{cc}
P_{i \beta} & \Sigma_{\beta} \lambda_{\beta}\left(P_{j \beta} P_{k \beta}-\delta_{i j} P_{k \beta}-\delta_{i k} P_{j \beta}\right) \tag{28}\\
\Sigma_{i} P_{l \alpha} P^{l \beta} & \Sigma_{\beta} \lambda_{\beta}\left(P_{j \alpha}-P_{j \beta}\right)\left(P_{k \alpha}-P_{k \beta}\right)
\end{array}\right|
$$

where

$$
\Delta=\operatorname{det} \sum_{i} P_{l \alpha} P_{l \beta} .
$$

What is remarkable about this expression is that although it is a linear combination of terms of the form (22) it still contrives to satisfy the non-linear equations (9), by virtue of the mechanism of equations (24) and (25). The side conditions upon $d_{i j}$ which follow from (10) are simply that the columns of $P_{i \alpha}$ are both right and left null eigenvectors of d.

Acknowledgment

Y Bouguenaya thanks the Algerian government for financial assistance.

Reference

Drell S D, Weinstein M and Yankielowicz S 1976 Phys. Rev. Lett. D 14 1627, appendix A

