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COMMENT 

A finite difference scheme with a Leibniz rule 

Y Bouguenaya and D B Fairlie 
Department of Mathematical Sciences, University of Durham, South Road, Durham 
DHl3LE.  U K  

Received 8 August 1985 

Abstract. In a finite difference scheme for numerical approximation the usual notion of 
product is replaced by a convolution- to circumvent the failure of the product rule for 
differentiation. The solution displays a complementarity: the more localised is the product 
the more extended is the approximation to the derivative and vice versa. 

One of the problems of constructing discrete approximations to non-linear equations 
is the lack of a discrete analogue of the Leibniz rule for differentiation of a product-the 
familiar distributive law 

fails for any finite difference approximation to the derivative (Drell et al 1976). In 
this comment we explore a loophole in this conclusion and restore a version of the 
Leibniz rule by modifying the definition of a product of two functions defined on a 
discrete set. In fact, what we find is a kind of complementarity: the more the product 
is localised, the more extended is the definition of derivative and vice versa. The 
problem is easy to set up, but not straightforward to solve. 

Suppose two functions f and g are defined on the integers with periodic boundary 
conditions: 

f; = f N + r r  gi = gN+, {i  =0 ,  . . . , N -  1). (2) 
Then we define the derivative at i as a linear combination 

and the product by 

1.k 

The coefficients d, and Cyk satisfy further natural requirements. I f f  is a constant then 
its derivative must vanish, i.e. 

d,, = 0. ( 5 )  
J 

Also i f f  = c is constant 

( fg) ,  = cg, 
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giving 

and  Cuk is symmetric in j and  k as f and g are on the same footing, i.e. 

Cqk = crkj.  

The final requirement we shall impose is associativity: 

(h(fg1) = ((hf), g )  

which translates into 

crpcsk/  = cz/scskj ,  
i 5 

Then the Leibniz rule is 

/ / I 

The normal definition of product requires that 

Cqk = SirSJrakr  (11) 
I 

which vanishes unless i, j ,  k are all equal. With this choice there is no solution for d. 
Further constraints arise from translation invariance: 

d t + l , J + l  = dIJ (12) 

where i + N = i is replaced by i and  there are similar constraints upon the c coefficients. 
The set of relations ( 5 )  and (10) are non-linear and the only obvious approach is to 
first satisfy (6), the only equations which are inhomogeneous, together with ( 7 ) .  It 
turns out that it is easier to first find a particular solution, and then to generalise this 
later. 

Consider the ansatz 

Crjk = gqpk + Sik< - <pk (all i) (13) 
with 

This clearly satisfies (6) and (7) and can easily be verified to satisfy the associativity 
relationship (9). The equation (10) is satisfied provided only that 

P&dk/ = 0. (15) 

This condition requires that dkl is a matrix of rank N - 1, and together with ( 5 )  implies 
that the general solution for di, is 

k 

where a,, is an  arbitrary N x N matrix. 
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A =  

In particular, with the choice P =  l / N ( l ,  1, 1 , .  . . , l ) ,  the usual two-point choice 
for dir ,  namely 

dil= 6r1- 6r1- I (17) 

satisfies (14) and ( 1 5 )  and gives for a product 

P 2  P . q  P .  r 
q . P  q2 q - r  
r ’  P r *  q r2 

= f W  + g ( f )  - ( f ) ( g )  (19) 

where ( f )  denotes an average over sites. Equations (17) and (19) clearly satisfy 
translation invariance requirements. This definition of product is highly non-local: in 
order to modify it we require a more general ansatz than (13). Consider a second 
vector qk, similarly normalised so that its components sum to unity, and the ansatz 

where 
N-1  

( 9 .  P )  denotes c q,P,. 
I=O 

This clearly satisfies (6) and ( 7 )  and after a little more calculation can be seen to fulfil 
associativity (9) .  Then equations (10) are satisfied provided that d, ,  in addition to 
satisfying ( 5 )  and (15),  also satisfies 

This d,J is now of rank N - 2, and is not so localised as in the former case. Further 
linearly independent vectors r, s, t ,  etc, all similarly normalised may be added to 
introduce more parameters into the choice of d ,  : this is the complementarity referred 
to earlier. The structure of this family of solutions is already evident with only three 
vectors P, q and r. The solution 

where 

satisfies (6) and (7) .  Here Pq denotes 

N-l  c p/q/ 
/=0 
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To demonstrate that (22) satisfies associativity it is best to proceed by establishing the 
lemma 

v c , k  = yvk (24) 
I 

(where V is P, q or r )  by the use of simple determinantal properties. With the help 
of this lemma, and the simple identity 

<Pk - V j U k  = (5 - u,)Pk + ( p k  - u k ) <  - (8 - u j ) ( p k  - u k )  ( 2 5 )  

the left-hand side of (9) may be calculated to give 

1 CtlrCskl = e c i k l  + PkCi/) + P/Ci,k 

I p i  41 ri +<plaik + pkp/au + pk<ad - epkp/ (all i )  I 

This expression is clearly symmetric i n j ,  k, I and hence is equal to the right-hand side. 
The final equation (10) imposes the condition that P, q, r are left null eigenvectors of 
d , ,  while the column vectors (1, 1, 1 , .  . . , l ) ' ,  p,u2 - ( p u ) u ,  are right null eigenvectors 
of d , ,  i.e. d is of rank N -3 .  Translation invariance is automatically implemented in 
(22) because the product formula involves scalar products off and  g with P, q, r, but 
remains an  extra requirement on d.  It is evident from (22) how to extend this solution 
to incorporate N independent vectors. As the number of parameters increases the 
product is effectively more and more localised until with N vectors the usual formula 
( 1  1 )  is recovered. To see this it is sufficient to take (22) with N = 3. Choosing pt = 
q, = a,, and r, = SZ2 the product formula becomes 

( f g ) ,  =fog, +f;go-fogo (all i )  

+ 8, L ( fo - fi ) (go  - g1) + 61 2 ( f o  - f 2 )  (go - g2) 

= f ; g ,  (by enumeration of cases). (27) 

A further generalisation of (22) which treats the vectors on a similar footing and 
which satisfies all the equations ($(lo) may be constructed as follows. Define a n  
N x L m a t r i x  PI,  ( i = O ,  . . . ,  N-l;cu=O, . . . ,  L-1)whosecolumnsarethevectors P, 
q, r, etc, and  introduce an  L component vector A, whose components sum to unity. 

Then, C is defined as the determinant of the partitioned matrix 

(28) pip  A, ( e p p k p  - a,pkp - a i k e p )  
Cijk = ' I A z/Pr,prp z p A p ( e , - e p ) ( p k u - P k p )  

where 

A =  det P,,P,. 
1 

What is remarkable about this expression is that although it is a linear combination 
of terms of the form (22) it still contrives to satisfy the non-linear equations (9), by 
virtue of the mechanism of equations (24) and (25). The side conditions upon d ,  
which follow from (10) are simply that the columns of P,, are both right and left null 
eigenvectors of d.  
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